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Motivation

• Single-cell RNA-seq datasets across multiple individuals and time points are
now routinely generated for different conditions [1].

Jerber-2021 Dataset:

– The Jerber-2021 dataset [1] contains single-cell RNA-Seq data of cells from
215 iPSC lines derived from the Human Induced Pluripotent Stem Cell Ini-
tiative (HipSci) and differentiating toward a mid-brain neural fate.

– After pre-processing, we considered the scRNA-seq count matrices from
day-32 and day-50, from 16, 22, and 8 donors, respectively, for DA, Sert,
and Epen1 cell types. Gene-gene networks for each donor at each time
point are constructed based on Pearson correlation matrices.

• Analysis of personalized dynamic gene networks constructed from these
datasets could unravel subject-specific network-level variation critical for ex-
plaining phenotypic differences.

Problem definition
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Fig. 1: A schematic for multi-subject dynamic gene networks. There is a gene-gene network for
each subject at each time step. The node-set is identical in the networks, and the edges vary
among both the subjects and across the time steps. MuDCoD assumes communities change
smoothly across both the subject and the time dimensions.

• We define a multi-subject dynamic gene co-expression network for discrete time
steps t = 0, . . . , T − 1 and for subject s = 0, . . . , S − 1 as a time series of
undirected and unweighted graphs Gs1, . . .GsT for each subject s.

• Given a multi-subject dynamic gene co-expression network, we aim to infer the
communities for each time point and subject.

Static spectral clustering:

L = D−1/2AD−1/2 where Di,j =

{
deg(vi) if i = j,

0 otherwise,
(1)

where deg(vi) denotes the degree of node i and A is the adjacency matrix of
the G.
Let K be fixed, and Vst ∈ RG×K denote a matrix with columns corresponding to
the K leading eigenvectors of Lst. A baseline strategy for inferring communities
separately at each snapshot of time step and for each individual by clustering
on Vst.

MuDCoD formulation

• PisCES [3] applies smoothing to the eigenvectors of Lst across time dimensions.

• MuDCoD applies eigenvector smoothing across both the subject and the time dimensions
to promote signal sharing. Let Ust = VstV

T
st be the projection matrix onto the column space

of Vst . Define mean projection: [
Ūt

]
ij
=

1

S

S−1∑
s=0

[
U st

]
ij
. (2)

where U st is the smoothed version of Ust. In order to estimate U st, we propose the
following optimization problem;

Smoothness over time and among subjects:

min
U st

s=0,...,S−1
t=0,...,T−1

T−1∑
t=0

(
∥Ust − U st∥

2

F + β∥U st − Ūt∥
2

F

)
+ α

T−2∑
t=0

∥U st − U s(t+1)∥
2

F

subject to U st,∈
{
V V T : V ∈ RG×K, V TV = I

}
∀s,∀t.

(3)

•α∥U st − U s(t+1)∥
2

F
enforces smoothness over the time dimension.

• β∥U st − Ūt∥
2

F constrains subject-specific variation from the mean time-dependent projec-
tion matrix Ūt.

We propose to solve this non-convex optimization problem with the following iterative
method:

U ℓ+1
st = ΠK

(
αU ℓ

s(t−1) + Ust + αU ℓ
s(t+1) + βŪ ℓ

t

)
, t = 1, . . . , T − 2 (4)

ΠK(M) =

K∑
k=1

vkv
T
k , (5)

where v1, . . . , vk are the K leading eigenvectors of M .

• We allow K to be unknown and possibly vary over time. We utilize the eigengap statistics
to select the number of modules, and α and β are chosen with a re-sampling-based
cross-validation strategy by [2].

MuDCoD discovers revealing gene modules
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Fig. 2: (a) Mean normalized MI score comparison within and between the low and high differentiation effi-
ciency groups of Epen1 cells. Each point stands for a donor and, the y-axis denotes the mean of normalized
MI scores between that donor and other donors in the corresponding group. (b) Set of enriched biological
processes for a co-occurrent gene set that is specific to low differentiation efficiency donors’ communities in
Epen1 cells at day-52. Displayed are significant biological processes (adjusted p-value ≤ 0.05) of one of the
largest co-occurrent gene sets (40 genes).

MuDCoD shares signal among subjects
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(a) NMI between subjects on day-30.
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(b) NMI between subjects on day-52.
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(c) NMI between day-30 and day-52 for each
subject.

Fig. 3: Normalized MI scores between the inferred modules on day-30 and on day-52 for each
subject w.r.t. the differentiation efficiency of the corresponding subject. The similarities between
the modules inferred on day-30 and day-52, quantified with the NMI score, tend to decrease with
increasing differentiation efficiency.

Performance comparison with simulations
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(a) SSoS setting: subjects evolve from a common ancestor at each
time step t; only the ancestor’s evolution over time is parameterized.
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(b) SSoT setting: subjects evolve from a common ancestor at t=0;
and then they evolve independently over time.

Fig. 4: Multi-subject dynamic degree corrected block models (MuS-Dyn-DCBM) for the two pro-
posed settings.
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(a) The SSoS setting.
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(b) The SSoT setting.

Fig. 5: Evaluation under two different MuS-Dyn-DCBM settings, (a) SSoS and (b) SSoT. Network
size G=500, # of class labels K=10, in-cluster and out-cluster density parameters pin = (0.2, 0.4)
and pout = 0.1, # of subjects S=8, and # of time points T ∈ {2, 4, 8}. x-axis denotes T , and
y-axis is the mean ARI of the inferred modules for all subjects and time steps.

Conclusion

Fig. 6:

MuDCoD enables robust inference for identifying time-varying person-
alized gene modules by leveraging shared signals among the subjects.
The implementation is publicly available at GitHub, (scan QR-code).
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