CONSULT-II:

Taxonomic identification using locality sensitive hashing

Ali Osman Berk Şapcı¹, Eleonora Rachtman¹, and Siavash Mirarab²

- ¹: Bioinformatics and Systems Biology Graduate Program, University of California, San Diego
- ²: Electrical and Computer Engineering, University of California, San Diego

Introduction & Background

The goal:

Identifying the taxon/taxa present in complex biological and environmental samples.

- Taxonomic classification: drive a single taxon prediction for each sequence.
- Abundance profiling: determine the taxonomic composition of a given sample.

The task:

Classify/profile sequences at the highest resolution (lowest taxonomic rank) possible.

Different approaches:

- *k*-mer based methods, genome-wide alignment, marker-based alignment.
- In essence, matching sequences (e.g., short reads) with genomes from a reference.
- Then, using the matching information in a clever way, perform;
 - taxonomic classification and/or abundance profiling.

Challenge:

Novel sequences, i.e., sequences without a close match in the reference set.

Two *k*-mer-based popular methods:

- CLARK [Ounit et al., 2015] and Kraken-II [Wood et al., 2019].
- They fail frequently for novel genomes [Rachtman et al., 2020, Pachiadaki et al., 2019].

CLARK and Kraken Both rely on exact *k*-mer matches.

Kraken

- Each k-mer in the sequence is mapped to least common ancestor of the genomes containing that k-mer.
- Counts mapped k-mers to compute a heighest-weighted rootto-leaf path.

[Wood and Salzberg, 2014]

Locality sensitive hashing and CONSULT

- Orignally designed for contamination detection.
- Uses LSH to partition the *k*-mers in the reference set into big lookup tables.
 - Each row \rightarrow "similar" *k*-mers.
- For each *k*-mer of a query;
 - Is there any reference k-mer with Hamming distance less than some threshold p to the query k-mer?
- Allowing inexact matches is the key feature.

Extending CONSULT for taxonomic identification

- CONSULT can not detect which reference species matches with a given read.
- Remembering what reference genomes include each reference k-mer?
 - Practically infeasible in terms of memory.
 - Even the k-mer encodings and library indices require 120Gb with a modern microbial dataset with 8 billion k-mer.

Goals

- Save some taxonomic information with reference k-mers, but keep the memory manageable.
- Derive a final taxonomic group from all the exact/inexact matches.

Constructing the Reference Library

Idea

- Instead of keeping all species-level IDs of each genome with a given k-mer, compute and save the ID of the LCA taxon.
 - 2 bytes for each LCA taxon ID, 16Gb in total for 8 billion k-mers.

Problem

- Pushing up taxonomic identifications due to errors in the reference.
- Saving kingdom level IDs is not very useful, we want to be as specific as possible.

Example - Library construction: saving a taxon ID per k-mer

Domain Kingdom Phylum Class 1 Genome Order Family Genus **Species** 20 genomes

••••• leads to other groups in that rank.

Example

- 20 genomes from the same genus and 1 genome from an incorrect phylum.
- Kraken would push the LCA to the kingdom rank.
- Saving kingdom-level IDs is not very useful.

Example - Library construction: saving a taxon ID per k-mer

••••• leads to other groups in that rank.

Example

- 20 genomes from the same genus and 1 genome from an incorrect phylum.
- Kraken would push the LCA to the kingdom rank.
- Saving kingdom-level IDs is not very useful.

Probabilistic LCA taxon computation

- N_i: number of genomes including k-mer i.
- For each genome having the k-mer i, update the LCA taxon with probability p_u(N_i).

Intuition

- A k-mer should appear sufficiently many times in a group to affect the LCA taxon.
 - Frequent *k*-mers \rightarrow many times.
 - Rare k-mers \rightarrow a few would be enough.

• Two parameters; rate of decrease and the offset of the function *p*_u.

Example - Probabilistic LCA taxon computation

Domain Kingdom Phylum Class 1 Genome Order Family LCA (85% probability) Genus Species 20 genomes

••••• leads to other groups in that rank.

Example

- 20 genomes from the same genus and 1 genome from an incorrect phylum.
- 85% probability \rightarrow LCA taxon is the correct genus.

CONSULT-II reference library¹:

- Tree of Life (ToL) (Zu et al., 2019) microbial genomic dataset.
 - 10,470 microbial species in total (after removing query genomes for testing).
 - 11,920 taxa in total.
- All unique canonical 35-mers from all genomes minimized down to 32-mers.

¹Extending the library constructed by original CONSULT [Rachtman et al., 2021]

Given a read; @READ-ID.X-XXX

ATACGATTACAGGGGAGATT...

A list of TaxonomicID:HammingDistance @READ-ID.X-XXX - 8770:0 - 8770:2 - 8770:0 -8770:18770:1 - 3030:0 - 3030:0 _ . . .

leads to other groups in that rank.

@READ-ID.X-XXX

- 8770:0
- 8770:2
- 8770:0
- 8770:1
- 8770:1
- 3030:0
- 3030:0
- ...

leads to other groups in that rank.

@READ-ID.X-XXX

- 8770:0
- 8770:2
- 8770:0
- 8770:1
- 8770:1
- 3030:0
- 3030:0
- ...

@READ-ID.X-XXX

- 8770:0
- 8770:2
- 8770:0
- 8770:1
- 8770:1
- 3030:0
- 3030:0
- ...
- Classifying under the green genus seems to be correct.
- How would we model this algorithmically?

••••• leads to other groups in that rank.

Taxonomic Classification Algorithm

A vote-based taxonomic identification approach

 Consider each k-mer match as a vote to the corresponding taxon, weighted by its distance.

$$\mathsf{v}_t(x) = \left(1 - rac{d}{k}
ight)^k \mathbbm{1}\left\{d \leq d_{\mathsf{max}}
ight\}$$

where x is a k-mer, d is the Hamming distance between x and its closest k-mer in the reference, and t is the taxon.

• Vote values drops close to exponentially w.r.t. distance *d*.

leads to other groups in that rank.

$$\mathsf{v}_t(x) = \left(1 - rac{d}{k}\right)^k \mathbb{1}\left\{d \le d_{\mathsf{max}}
ight\}$$

- $\cdot \ d{=}0 \rightarrow v{=}1$
- \cdot d=1 \rightarrow v=0.36
- \cdot d=2 \rightarrow v=0.12
- \cdot d=3 \rightarrow v=0.04
- \cdot d=4 \rightarrow v=0.014
- \cdot d=5 \rightarrow v=0.004

- We have the taxonomic tree.
 - We can incorporate the hierarchical relationships between taxa.
- To aggregate vote values, recursively sum up individual votes contributed by each k-mer in a bottom-up manner;

$$ar{\mathsf{v}}\left(t
ight) = \sum_{x\in\mathcal{R}}\mathsf{v}_{t}\left(x
ight) + \sum_{t'\in\mathsf{C}\left(t
ight)}ar{\mathsf{v}}\left(t'
ight)$$

where C(t) is the set of children of the taxon t in the taxonomic tree.

Ieads to other groups in that rank.

The total vote for the taxon t:

$$ar{\mathsf{v}}\left(t
ight) = \sum_{x\in\mathcal{R}}\mathsf{v}_{t}\left(x
ight) + \sum_{t'\in\mathsf{C}\left(t
ight)}ar{\mathsf{v}}\left(t'
ight)$$

Total vote values increase as we go up in the tree, reaches its maximum at the root.

The total vote for the taxon *t*:

$$ar{\mathsf{v}}\left(t
ight) = \sum_{x\in\mathcal{R}}\mathsf{v}_{t}\left(x
ight) + \sum_{t'\in\mathsf{C}\left(t
ight)}ar{\mathsf{v}}\left(t'
ight)$$

To balance specificity and sensitivity, we require a majority vote by;

 $au = 0.5 \max_{t \in \mathcal{T}} \bar{v}(t)$.

Example

 $ar{\mathrm{v}}\left(t
ight)=8.47$ threshold = 4.235

••••• leads to other groups in that rank.

••••• leads to other groups in that rank.

The total vote for the taxon *t*:

$$ar{\mathsf{v}}\left(t
ight) = \sum_{x\in\mathcal{R}}\mathsf{v}_{t}\left(x
ight) + \sum_{t'\in\mathsf{C}\left(t
ight)}ar{\mathsf{v}}\left(t'
ight)$$

To balance specificity and sensitivity, we require a majority vote by;

 $au = 0.5 \max_{t \in \mathcal{T}} \bar{v}(t)$.

Note that At a given rank, threshold τ gives a unique taxon.

Controlled novelty experiment for taxonomic classification

Compared with Kraken-II [Wood et al., 2019] and CLARK [Ounit et al., 2015].

Queries: 120 bacterial genomes.

- Selected with controlled novelty.
- Novelty is defined based on Mash distances to the closest species in the reference.
- Seven categories, with at least 11 genomes in each.

We evaluate each rank separately.

Evaluation

- If classified in the given rank or in a lower rank;
 - TP: Classified in the correct lineage.
 - FP: Classified in the false lineage.
- If not classified or classified in an upper rank;
 - **TN**: The true taxon is in the reference set.
 - $\ensuremath{\mathsf{FN}}$: The true taxon is not in the reference set.

CONSULT-II usually performs much better than other methods for novel genomes.

CONSULT-II achieves higher F1-scores in the controlled novelty experiments

- As queries become more novel, accuracy drops across all ranks for all methods.
- Except at species level, CONSULT-II clearly outperforms for novel genomes.
- Improvements are larger for upper levels, e.g., phylum, class, order.

Precision-recall comparison in controlled novelty experiments

- CONSULT-II has universally higher recall levels.
 - All methods have comparable precision levels.
 - Often higher for family and genus.
 - Lower or comparable for phylum.
- Better recall usually comes with no expense of precision.

Computing Abundance Profiles

We can further utilize total vote values to derive abundance profiles.

For each rank separately, normalize total vote values to derive a profile vector $\bar{v}(t)$ for $t \in T_l$ for rank *l*;

$$p_{t}^{\prime}=rac{\sqrt{ar{\mathrm{v}}\left(\mathrm{t}
ight)}}{\sum_{t^{\prime}\in\mathcal{T}_{l}}\sqrt{ar{\mathrm{v}}\left(\mathrm{t}^{\prime}
ight)}}$$

where p'_t is the profile value of taxon t from level l. Then, the abundance profile for rank l is given by $p' = \left[p'_t \right]_{t \in \mathcal{T}_l}$.

Comparison with Bracken [Lu et al., 2017] and CLARK [Ounit et al., 2015].

Queries: CAMI benchmarking challenge.

- CAMI-1 dataset.
- Subsampled the original sample down to 10 million reads.
- Evaluated using two metrics computed by the OPAL tool [Meyer et al., 2019].
 - Shannon's equitability to measure alpha diversity at each rank.
 - Bray-curtis to measure normalized error of abundance estimates at each rank.

Evaluation of profile estimates using different metrics

- Shannon's equitability measures the variety of taxa present in a sample.
 - Outperforms especially in the family, species, and genus levels.
 - May be due to higher recall.
- Bray-Curtis dissimilarity quantifies compositional dissimilarity.
 - Comparable except family and genus levels.

Conclusions

Conclusions

- A promising launching point.
- Controlled novelety experiment shows that LSH-based CONSULT-II identifies novel genomes better.
- Our vote-based approach provides a rich representation for the reads, which can be successfully used in abundance profiling.
- Our heuristics have no theoretical guarantees, but performed well empirically.

Future directions:

- A theoretical framework for the vote and LCA-update probability functions.
- A distance-based phylogenetic placement approach.
- Reducing memory requirements;

120Gb hash table and k-mer encodings + 16Gb taxonomic IDs + 16Gb k-mer counts

 $> 150 {
m Gb}$

Siavash Mirarab & Eleonora Rachtman

- J. Lu, F. P. Breitwieser, P. Thielen, and S. L. Salzberg. Bracken: estimating species abundance in metagenomics data. *PeerJ Computer Science*, 3:e104, Jan. 2017. ISSN 2376-5992. doi: 10.7717/peerj-cs.104. URL https://doi.org/10.7717/peerj-cs.104.
- F. Meyer, A. Bremges, P. Belmann, S. Janssen, A. C. McHardy, and D. Koslicki. Assessing taxonomic metagenome profilers with OPAL. *Genome Biology*, 20(1):51, 2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1646-y. URL https://doi.org/10.1186/s13059-019-1646-y.

R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. *BMC Genomics*, 16(1):236, Dec. 2015. ISSN 1471-2164. doi: 10.1186/s12864-015-1419-2. URL

http://www.biomedcentral.com/1471-2164/16/236.

M. G. Pachiadaki, J. M. Brown, J. Brown, O. Bezuidt, P. M. Berube, S. J. Biller, N. J. Poulton, M. D. Burkart, J. J. La Clair, S. W. Chisholm, and R. Stepanauskas. Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. *Cell*, 179(7):1623–1635.e11, 2019. ISSN 0092-8674. doi: https://doi.org/10.1016/j.cell.2019.11.017. URL

http://www.sciencedirect.com/science/article/pii/S0092867419312735.

 E. Rachtman, M. Balaban, V. Bafna, and S. Mirarab. The impact of contaminants on the accuracy of genome skimming and the effectiveness of exclusion read filters. *Molecular Ecology Resources*, 20(3):1755–0998.13135, May 2020. ISSN 1755-098X. doi: 10.1111/1755-0998.13135. URL

https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.13135.

E. Rachtman, V. Bafna, and S. Mirarab. CONSULT: accurate contamination removal using locality-sensitive hashing. NAR Genomics and Bioinformatics, 3(3): 10.1101/2021.03.18.436035, June 2021. ISSN 2631-9268. doi: 10.1093/nargab/lqab071. URL https://academic.oup.com/nargab/article/doi/10.1093/nargab/lqab071/

6342218?guestAccessKey=05db43e1-b54e-4b43-9f04-ee5c92aa0366.

- D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biology*, 15(3):R46, 2014. ISSN 1465-6906. doi: 10.1186/gb-2014-15-3-r46. URL http://genomebiology.biomedcentral.com/ articles/10.1186/gb-2014-15-3-r46. arXiv: Figures, S., 2010. Supplementary information. Nature, 1(c), pp.1-7. Available at:
 - http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3006164&tool=pmcentrez&ren ISBN: 1465-6914 (Electronic)\r1465-6906 (Linking).
- D. E. Wood, J. Lu, and B. Langmead. Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1):257, 2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1891-0. URL https://doi.org/10.1186/s13059-019-1891-0.
- S. H. Ye, K. J. Siddle, D. J. Park, and P. C. Sabeti. Benchmarking Metagenomics Tools for Taxonomic Classification. *Cell*, 178(4):779–794, Aug. 2019. ISSN 1097-4172. doi: 10.1016/j.cell.2019.07.010.

Extra Slides

Probability funciton for LCA computation

- N_i: number of genomes including k-mer
 i
- For each genome having the k-mer i, update the LCA taxon with probability p_u(N_i).
 - w: rate of decrease
 - **s**: the offset of the function p_u

$$p_u(N_i) = \min\left\{\frac{w}{\max\left\{N_i + w - s, w\right\}} + \frac{1}{s^2}, 1\right\}$$

Controlling precision-recall tradeoff with total vote threshold

The empirical cumulative distribution of total votes for TP/FP shows the tradeoff.

Removing classifications with low total-vote values increases precision by sacrificing some recall.

CONSULT-II achieves higher F1-scores in the controlled novelty experiments

33

Precision-recall comparison in controlled novelty experiments

