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Introduction & Background



Metagenomic analysis

The goal:

Identifying the taxon/taxa present in complex biological and environmental samples.

= Taxonomic classification: drive a single taxon prediction for each sequence.
= Abundance profiling: determine the taxonomic composition of a given sample.

‘ TACCGAT
g ATAGATGACA Y
CCTATATATTAT GGTAATGGTAT
Extraction and | 7 ACAATATGAC e
. _ml_» CATACCGATT Classification
{2 CAGATTATGA )
CCTAATGGTAT 4
[T
Metagenomic Library Unclassified Classification to
sample containing mix sequenced their species of
containing mix of short DNA DNA reads origin, and an
of microbes fragments abundance profile

[Ye et al., 2019]



Problem: taxonomic identification

The task:

Classify/profile sequences at the highest resolution (lowest taxonomic rank) possible.
Different approaches:

= k-mer based methods, genome-wide alignment, marker-based alignment.

= In essence, matching sequences (e.g., short reads) with genomes from a reference.
= Then, using the matching information in a clever way, perform;

— taxonomic classification and/or abundance profiling.



Novel sequences challenge popular methods

Challenge:

Novel sequences, i.e., sequences without a close match in the reference set.
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Two k-mer-based popular methods:

= CLARK [Ounit et al., 2015] and Kraken-
[l [Wood et al., 2019].
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Existing k-mer-based metagenomic

CLARK and Kraken
Both rely on exact k-mer matches.

Kraken
= Each k-mer in the sequence is

mapped to least common ances-
tor of the genomes containing
that k-mer.

= Counts mapped k-mers to com-
pute a heighest-weighted root-
to-leaf path.
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Locality sensitive hashing and CONSULT

= Orignally designed for contamination

detection. LSH Positions
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[Rachtman et al., 2021]

= Allowing inexact matches is the key feature.



Extending CONSULT for taxonomic identification

= CONSULT can not detect which reference species matches with a given read.

= Remembering what reference genomes include each reference k-mer?
— Practically infeasible in terms of memory.
— Even the k-mer encodings and library indices require 120Gb with a modern microbial
dataset with 8 billion k-mer.

Goals

= Save some taxonomic information with reference k-mers, but keep the memory man-
ageable.

= Derive a final taxonomic group from all the exact/inexact matches.



Constructing the Reference Library



Library construction: saving a taxon ID per k-mer

Idea

= |nstead of keeping all species-level IDs of each genome with a given k-mer, compute
and save the ID of the LCA taxon.
— 2 bytes for each LCA taxon ID, 16Gb in total for 8 billion k-mers.

Problem
= Pushing up taxonomic identifications due to errors in the reference.

= Saving kingdom level IDs is not very useful, we want to be as specific as possible.



Example - Library construction: saving a taxon ID per k-mer
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Example - Library construction: saving a taxon ID per k-mer
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Probabilistic LCA taxon computation

= Two parameters; rate of decrease and the

offset of the function p,.
= N;: number of genomes including k-mer /.
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Example - Probabilistic LCA taxon computation

----- leads to other groups in that rank.
|:| Domain
Q/J\Q Kingdom
Example
: [
= 20 genomes from the same m : PR
genus and 1 genome from an in- ﬁ: i& Class
correct phylum.

m Order
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S 2
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Reference library construction

CONSULT-II reference library!:

= Tree of Life (ToL) (Zu et al., 2019) microbial genomic dataset.

— 10,470 microbial species in total (after removing query genomes for testing).
— 11,920 taxa in total.

= All unique canonical 35-mers from all genomes minimized down to 32-mers.

!Extending the library constructed by original CONSULT [Rachtman et al., 2021]
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---- leads to other groups in that rank.
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---- leads to other groups in that rank.
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OREAD-ID.X-Xxx  mmmes leads to other groups in that rank.
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— 8770:
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= Classifying under the green
genus seems to be correct.

= How would we model this
algorithmically?
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Taxonomic Classification Algorithm




A vote-based taxonomic identification approach

He
1o o (1-9)k
= Consider each k-mer match as a vote to = 087
the corresponding taxon, weighted by its fo 6
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distance between x and its closest k-mer Hamming distance (d)

in the reference, and t is the taxon.
= Vote values drops close to exponentially

w.r.t. distance d.
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---- leads to other groups in that rank.

Vote of k-mer x to the taxon t:

ve(x) = (1 - %)k]l {d < dmax}

- d=0 — v=1

- d=1 — v=0.36
- d=2 — v=0.12
- d=3 — v=0.04
- d=4 — v=0.014
- d=5 — v=0.004




Aggregating votes to derive a single taxon ID

= We have the taxonomic tree.
— We can incorporate the hierarchical relationships between taxa.

= To aggregate vote values, recursively sum up individual votes contributed by each
k-mer in a bottom-up manner;

V()= v+ > v(t)

x€R t'eC(t)

where C(t) is the set of children of the taxon t in the taxonomic tree.
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The total vote for the taxon t:

v(t)= th(x)+ Z v (t)

x€R t'eC(t)

Total vote values increase as
we go up in the tree, reaches
its maximum at the root.

===== |eads to other groups in that rank.
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The total vote for the taxon t:

v(t)= th(x)+ Z v (t)

XER rec(t) ﬂ V=8.47 v=0  Kingdom

/ _ !
To balance specificity and /=6-978Q—+© v=1.492 Phylum
sensitivity, we require a /g=6.978<5§ 1 Class

majority vote by; / E

7 =0.5maxv(t).
teT

Example

v (t) = 8.47
threshold = 4.235

v=2.48
Species
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The total vote for the taxon t:

V()= v+ > v(Y)

XER t'eC(t)

To balance specificity and
sensitivity, we require a
majority vote by;
7 =0.5maxv (t).
teT

Note that
At a given rank, threshold 7

gives a unique taxon.

ﬂ V=8.47 v=0  Kingdom
ﬁ=6.978Q—+©v 1.492 Phylum
/ V=5'973(5§ Class

v=2.48

Species

17



Controlled novelty experiment for taxonomic classification

Compared with Kraken-II [Wood et al., 2019] and CLARK [Ounit et al., 2015].

Queries: 120 bacterial genomes.

= Selected with controlled novelty.
= Novelty is defined based on Mash distances to the closest species in the reference.
= Seven categories, with at least 11 genomes in each.
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CONSULT-II achieves higher F1-scores in the controlled novelty experiments

order I
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We evaluate each rank separately.

Evaluation
= If classified in the given rank or in a lower rank;
— TP: Classified in the correct lineage.
— FP: Classified in the false lineage.
= If not classified or classified in an upper rank;
— TN: The true taxon is in the reference set.
— FN: The true taxon is not in the reference set.
CONSULT-II usually performs much better than other

methods for novel genomes.
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CONSULT-II achieves higher F1-scores in the controlled novelty experiments
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Distance to closest
~CLARK ~CONSULT-Il  —Kraken~II
= As queries become more novel, accuracy drops across all ranks for all methods.
= Except at species level, CONSULT-II clearly outperforms for novel genomes.

= |Improvements are larger for upper levels, e.g., phylum, class, order.
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Precision-recall comparison in controlled novelty experiments

genus l I family l I phylum l
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= CONSULT-II has universally higher recall levels.
= All methods have comparable precision levels.
— Often higher for family and genus.
— Lower or comparable for phylum.

= Better recall usually comes with no expense of precision.
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Computing Abundance Profiles




Utilizing total vote values for abundance profiling

We can further utilize total vote values to derive abundance profiles.

For each rank separately, normalize total vote values to derive a profile vector v (t) for
t € 7, for rank [;
ph= YT
Yver; VY (V)

where p} is the profile value of taxon t from level /. Then, the abundance profile for

rank / is given by p/ = [pi} .
te];
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Abundance profiling experiment

Comparison with Bracken [Lu et al., 2017] and CLARK [Ounit et al., 2015].

Queries: CAMI benchmarking challenge.

= CAMI-1 dataset.

= Subsampled the original sample down to 10 million reads.

= Evaluated using two metrics computed by the OPAL tool [Meyer et al., 2019].
— Shannon'’s equitability to measure alpha diversity at each rank.

— Bray-curtis to measure normalized error of abundance estimates at each rank.
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Evaluation of profile estimates using different metrics

= Shannon's equitability measures

the variety of taxa present in a

Bray-Curtis dissimilarity Shannon's equitability
-DO.9 0.35 Sample
508
3 0.30 . .
Eor — Outperforms especially in the
z 0.25 . i
506 ® CLARK family, species, and genus
Sos 0.20
g 4 CONSULT-I levels.
504 0.15 .
€05 B Bracken — May be due to higher recall.
> 0.10
£o02
2 0.05
0.1 . . . a a

i oo = Bray-Curtis dissimilarity

E E 3 § = % 8 2 £ E % & = 3 3% ifi iti

§ 28 ¢ % : ¢ s s 8¢ ¢ d quantifies compositional

£ a w £ o o . . . .

H i dissimilarity.

— Comparable except family
and genus levels.
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Conclusions




Conclusions

= A promising launching point.

= Controlled novelety experiment shows that LSH-based CONSULT-II identifies novel
genomes better.

= QOur vote-based approach provides a rich representation for the reads, which can be
successfully used in abundance profiling.

= Our heuristics have no theoretical guarantees, but performed well empirically.

Future directions:
= A theoretical framework for the vote and LCA-update probability functions.
= A distance-based phylogenetic placement approach.

= Reducing memory requirements;
120Gb hash table and k-mer encodings 4+ 16Gb taxonomic IDs + 16Gb k-mer counts
> 150Gb 2
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Probability funciton for LCA computation

= N;: number of genomes including k-mer
i
= For each genome having the k-mer i,
update the LCA taxon with probability
pu(Ni)'
— w: rate of decrease
— s: the offset of the function p,

pu(N;) = min { Y 41 1}

1.0
o 0.8
o
T 0.7
=}
$06
-
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>
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2
& 0.2
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max {N;+w—s,w} &’
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Controlling precision-recall tradeoff with total vote threshold

The empirical cumulative distribution of

total votes for TP/FP shows the tradeoff.

Removing classifications with low total-vote values

increases precision by sacrificing some recall.
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CONSULT-II achieves higher F1-scores in the controlled novelty experiments
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Precision-recall comparison in controlled novelty experiments
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