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Introduction & Background



Metagenomic analysis

The goal:
Identifying the taxon/taxa present in complex biological and environmental samples.

• Taxonomic classification: drive a single taxon prediction for each sequence.
• Abundance profiling: determine the taxonomic composition of a given sample.

Efficient Classification of Millions of Reads
A large number of tools have recently been developed that are

focused on classifying large amounts of sequencing reads to

known taxa with increasing speed. These taxonomic classifiers

require pre-computed databases of previously sequenced mi-

crobial genetic sequences against which sequencing data are

matched.

Within taxonomic classifiers, a distinction can be made be-

tween taxonomic binning and taxonomic profiling. Binning ap-

proaches provide classification of individual sequence reads to

reference taxa. Profilers report the relative abundances of taxa

within a dataset but do not classify individual reads. However,

in practice, these methods are often used interchangeably

when analyzing metagenomic sequencing data. Although not

generated by default, a taxonomic profile can be calculated

from binning approaches by summing up the individual read

classifications. Taxonomic classifiers should not be confused

with a distinct class of assembly-based tools for analysis of

metagenomic sequencing data that cluster contigs de novo

without the aid of any reference databases, an approach known

as reference-free binning (Alneberg et al., 2014; Kang et al.,

2015; Wu et al., 2016). These tools cannot taxonomically classify

sequences and, thus, are not evaluated here but have recently

been benchmarked elsewhere (Sczyrba et al., 2017).

To generate assignments, classifiers utilize newer algorithmic

approaches to ensure that classification speeds are fast enough

for even large numbers of sequencing reads. To do so, most

tools first seek to reduce the number of candidate hits for pro-

cessing via approaches such as searching for stretches of per-

fect sequence matches with reference sequences (k-mers,

typically around 31 nt in length) or via an FM index (full-text index

in minute space) (Ferragina andManzini, 2000). As a result, these

methods are typically not as sensitive as BLAST but are de-

signed to be much faster. In addition, they frequently favor

more memory usage to reduce CPU usage and, thus, classifica-

tion time. These tools can be divided into three groups: DNA-to-

DNA classification (BLASTn-like), DNA-to-protein (BLASTx-like)

classification, and marker-based classification.

DNA-to-DNA and DNA-to-protein tools classify sequencing

reads by comparison with comprehensive genomic databases

of DNA or protein sequences, respectively. DNA-to-protein tools

are more computationally intensive than DNA-to-DNA tools

because they need to analyze all six frames of potential DNA-

to-amino acid translation, but they can be more sensitive to

novel and highly variable sequences because of the lower muta-

tion rates of amino acids compared with nucleotide sequences

(Altschul et al., 1990). DNA-to-protein tools, however, target

only the coding sequence of the genome and, therefore, will

not be able to classify non-coding sequencing reads.

Marker-based methods typically include in their reference

database only a subset of gene sequences instead of whole ge-

nomes, normally specific gene families that have good discrimi-

natory power between species. The most widely used single

marker gene for bacterial metagenomics is the highly conserved

16S rRNA sequence (Edgar, 2018; Yarza et al., 2014), although

other markers are needed to identify viruses, fungi, and other mi-

crobes that do not have the 16S marker gene. Some marker-

based methods, such as MetaPhlAn2, address this limitation

by indexing a number of different gene families in its database

to identify taxa from other microbial kingdoms (Truong et al.,

2015). The use of a subset of genes makes thesemethods quick;

however, the marker sequences used can introduce a bias in the

results when they are not evenly distributed among the microbial

sequences of interest (D’Amore et al., 2016).

Size and Growth of Reference Databases
All metagenomics classifiers require a pre-computed database

based on previously sequenced microbial genetic sequences

whose sheer size presents a considerable computational chal-

lenge. The most popular reference databases are RefSeq com-

plete genomes (RefSeq CG) for microbial species as well as the

BLAST nt and nr databases for high-quality nucleotide and protein

sequences, respectively, from all kingdoms of life, with �50 and

�200 million sequences, respectively, as of 2019. Other data-

bases include SILVA for 16S rRNA, with �2 million sequences,

and GenBank for a larger quantity of genomes with lower quality

control standards (Benson et al., 2005; Quast et al., 2013).

The universe of microbial sequences is very diverse, and these

resulting databases are fairly large, typically requiring 10–100 s

of gigabytes. This vast search space can also result in a signifi-

cant number of false positive classifications because of the large

number of possible taxa against which the sequences are

Figure 1. Processing Steps to Go from a Complex Metagenomic Sample to an Abundance Profile of Sample Content

780 Cell 178, August 8, 2019

[Ye et al., 2019]
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Problem: taxonomic identification

The task:
Classify/profile sequences at the highest resolution (lowest taxonomic rank) possible.

Different approaches:
• k-mer based methods, genome-wide alignment, marker-based alignment.
• In essence, matching sequences (e.g., short reads) with genomes from a reference.
• Then, using the matching information in a clever way, perform;

– taxonomic classification and/or abundance profiling.
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Novel sequences challenge popular methods

Challenge:
Novel sequences, i.e., sequences without a close match in the reference set.

Two k-mer-based popular methods:
• CLARK [Ounit et al., 2015] and Kraken-

II [Wood et al., 2019].
• They fail frequently for novel genomes

[Rachtman et al., 2020, Pachiadaki
et al., 2019]. Novelty increases 

Kraken-II

[Rachtman et al., 2020]
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Existing k-mer-based metagenomic analysis methods

CLARK and Kraken
Both rely on exact k-mer matches.

Kraken
• Each k-mer in the sequence is

mapped to least common ances-
tor of the genomes containing
that k-mer.

• Counts mapped k-mers to com-
pute a heighest-weighted root-
to-leaf path. [Wood and Salzberg, 2014]
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Locality sensitive hashing and CONSULT

• Orignally designed for contamination
detection.

• Uses LSH to partition the k-mers in the
reference set into big lookup tables.

– Each row → “similar” k-mers.
• For each k-mer of a query;

– Is there any reference k-mer with
Hamming distance less than some
threshold p to the query k-mer?

• Allowing inexact matches is the key feature.

A G A A C C T

T C C G G T T

T C T G G T C

T C T A A A G

C A G C A G A

C A C C C G T

...

T C C G G T A

LSHReference 
k-mers

LSH Positions

Lookup Table

[Rachtman et al., 2021]
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Extending CONSULT for taxonomic identification

• CONSULT can not detect which reference species matches with a given read.
• Remembering what reference genomes include each reference k-mer?

– Practically infeasible in terms of memory.
– Even the k-mer encodings and library indices require 120Gb with a modern microbial

dataset with 8 billion k-mer.

Goals
• Save some taxonomic information with reference k-mers, but keep the memory man-

ageable.
• Derive a final taxonomic group from all the exact/inexact matches.
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Constructing the Reference Library



Library construction: saving a taxon ID per k-mer

Idea
• Instead of keeping all species-level IDs of each genome with a given k-mer, compute

and save the ID of the LCA taxon.
– 2 bytes for each LCA taxon ID, 16Gb in total for 8 billion k-mers.

Problem
• Pushing up taxonomic identifications due to errors in the reference.
• Saving kingdom level IDs is not very useful, we want to be as specific as possible.
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Example - Library construction: saving a taxon ID per k-mer

Example
• 20 genomes from the same

genus and 1 genome from an in-
correct phylum.

• Kraken would push the LCA to
the kingdom rank.

• Saving kingdom-level IDs is not
very useful.

Domain

Species

Order

Family

Genus

Kingdom

Phylum

Class

leads to other groups in that rank.

20 genomes

1 Genome
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Example - Library construction: saving a taxon ID per k-mer

Example
• 20 genomes from the same

genus and 1 genome from an in-
correct phylum.

• Kraken would push the LCA to
the kingdom rank.

• Saving kingdom-level IDs is not
very useful.

Domain

Species

Order

Family

Genus

Kingdom

Phylum

Class

leads to other groups in that rank.

20 genomes

1 Genome

LCA
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Probabilistic LCA taxon computation

• Ni: number of genomes including k-mer i.
• For each genome having the k-mer i, update

the LCA taxon with probability pu(Ni).

Intuition
• A k-mer should appear sufficiently many

times in a group to affect the LCA taxon.
– Frequent k-mers → many times.
– Rare k-mers → a few would be enough.

• Two parameters; rate of decrease and the
offset of the function pu.
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Example - Probabilistic LCA taxon computation

Example
• 20 genomes from the same

genus and 1 genome from an in-
correct phylum.

• 85% probability → LCA taxon is
the correct genus.

Domain

Species

Order

Family

Genus

Kingdom

Phylum

Class

leads to other groups in that rank.

20 genomes

1 Genome

LCA (85% probability)
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Reference library construction

CONSULT-II reference library1:
• Tree of Life (ToL) (Zu et al., 2019) microbial genomic dataset.

– 10,470 microbial species in total (after removing query genomes for testing).
– 11,920 taxa in total.

• All unique canonical 35-mers from all genomes minimized down to 32-mers.

1Extending the library constructed by original CONSULT [Rachtman et al., 2021]
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Given a read;
@READ-ID.X-XXX
ATACGATTACAGGGGAGATT…

CONSULT-II
Reference Library

A list of
TaxonomicID:HammingDistance
@READ-ID.X-XXX

– 8770:0
– 8770:2
– 8770:0
– 8770:1
– 8770:1
– 3030:0
– 3030:0
– ...
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@READ-ID.X-XXX
– 8770:0
– 8770:2
– 8770:0
– 8770:1
– 8770:1
– 3030:0
– 3030:0
– ...

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain
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@READ-ID.X-XXX
– 8770:0
– 8770:2
– 8770:0
– 8770:1
– 8770:1
– 3030:0
– 3030:0
– ...

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain

d=1

d=1

d=1

d=1
d=1

d=0
d=0

d=0

d=0

d=0

d=2

d=3

d=4

d=5
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@READ-ID.X-XXX
– 8770:0
– 8770:2
– 8770:0
– 8770:1
– 8770:1
– 3030:0
– 3030:0
– ...

• Classifying under the green
genus seems to be correct.

• How would we model this
algorithmically?

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain

1

1

1

1
1

0
0

0

0

0

2
3

4

5
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Taxonomic Classification Algorithm



A vote-based taxonomic identification approach

• Consider each k-mer match as a vote to
the corresponding taxon, weighted by its
distance.

vt (x) =
(

1 − d
k

)k
1 {d ≤ dmax}

where x is a k-mer, d is the Hamming
distance between x and its closest k-mer
in the reference, and t is the taxon.
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• Vote values drops close to exponentially
w.r.t. distance d.
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Vote of k-mer x to the taxon t:

vt (x) =
(

1 − d
k

)k
1 {d ≤ dmax}

· d=0 → v=1
· d=1 → v=0.36
· d=2 → v=0.12
· d=3 → v=0.04
· d=4 → v=0.014
· d=5 → v=0.004

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain

v=1

v=.36
v=.014

v=.36 v=1
v=.36

v=.04v=.36

v=.004 v=1

v=.12 v=.36
v=1
v=1
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Aggregating votes to derive a single taxon ID

• We have the taxonomic tree.
– We can incorporate the hierarchical relationships between taxa.

• To aggregate vote values, recursively sum up individual votes contributed by each
k-mer in a bottom-up manner;

v (t) =
∑
x∈R

vt (x) +
∑

t′∈C(t)
v
(
t′
)

where C (t) is the set of children of the taxon t in the taxonomic tree.
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The total vote for the taxon t:

v (t) =
∑
x∈R

vt (x)+
∑

t′∈C(t)
v
(
t′
)

Total vote values increase as
we go up in the tree, reaches
its maximum at the root.

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain

v̄=2.48

v̄=.004

v̄=.04

v̄=4.88

v̄=4.844

v̄=1

v̄=.364v̄=.36

v̄=1.724

v̄=6.978

v̄=6.978

v̄=6.978

v̄=8.47

v̄=1.492

v̄=0

v̄=8.47
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The total vote for the taxon t:

v (t) =
∑
x∈R

vt (x)+
∑

t′∈C(t)
v
(
t′
)

To balance specificity and
sensitivity, we require a
majority vote by;

τ = 0.5max
t∈T

v (t) .

Example

v (t) = 8.47
threshold = 4.235

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain

v̄=2.48

v̄=.004

v̄=.04

v̄=4.88

v̄=4.844

v̄=1

v̄=.364v̄=.36

v̄=1.724

v̄=6.978

v̄=6.978

v̄=6.978

v̄=8.47

v̄=1.492

v̄=0

v̄=8.47
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The total vote for the taxon t:

v (t) =
∑
x∈R

vt (x)+
∑

t′∈C(t)
v
(
t′
)

To balance specificity and
sensitivity, we require a
majority vote by;

τ = 0.5max
t∈T

v (t) .

Note that
At a given rank, threshold τ

gives a unique taxon.

leads to other groups in that rank.

Class

Phylum

Kingdom

Genus

Family

Order

Species

Domain

v̄=2.48

v̄=.004

v̄=.04

v̄=4.88

v̄=4.844

v̄=1

v̄=.364v̄=.36

v̄=1.724

v̄=6.978

v̄=6.978

v̄=6.978

v̄=8.47

v̄=1.492

v̄=0

v̄=8.47
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Controlled novelty experiment for taxonomic classification

Compared with Kraken-II [Wood et al., 2019] and CLARK [Ounit et al., 2015].

Queries: 120 bacterial genomes.

• Selected with controlled novelty.
• Novelty is defined based on Mash distances to the closest species in the reference.
• Seven categories, with at least 11 genomes in each.
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CONSULT-II achieves higher F1-scores in the controlled novelty experiments

order class phylum

species genus family
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We evaluate each rank separately.

Evaluation
• If classified in the given rank or in a lower rank;

– TP: Classified in the correct lineage.
– FP: Classified in the false lineage.

• If not classified or classified in an upper rank;
– TN: The true taxon is in the reference set.
– FN: The true taxon is not in the reference set.

CONSULT-II usually performs much better than other
methods for novel genomes.
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CONSULT-II achieves higher F1-scores in the controlled novelty experiments

species genus phylum
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• As queries become more novel, accuracy drops across all ranks for all methods.
• Except at species level, CONSULT-II clearly outperforms for novel genomes.
• Improvements are larger for upper levels, e.g., phylum, class, order.
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Precision-recall comparison in controlled novelty experiments

phylumgenus family
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• CONSULT-II has universally higher recall levels.
• All methods have comparable precision levels.

– Often higher for family and genus.
– Lower or comparable for phylum.

• Better recall usually comes with no expense of precision. 21



Computing Abundance Profiles



Utilizing total vote values for abundance profiling

We can further utilize total vote values to derive abundance profiles.

For each rank separately, normalize total vote values to derive a profile vector v (t) for
t ∈ Tl for rank l;

pl
t =

√
v (t)∑

t′∈Tl

√
v (t′)

where pl
t is the profile value of taxon t from level l. Then, the abundance profile for

rank l is given by pl =
[
pl

t

]
t∈Tl

.
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Abundance profiling experiment

Comparison with Bracken [Lu et al., 2017] and CLARK [Ounit et al., 2015].

Queries: CAMI benchmarking challenge.

• CAMI-1 dataset.
• Subsampled the original sample down to 10 million reads.
• Evaluated using two metrics computed by the OPAL tool [Meyer et al., 2019].

– Shannon’s equitability to measure alpha diversity at each rank.
– Bray-curtis to measure normalized error of abundance estimates at each rank.
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Evaluation of profile estimates using different metrics

      Bray-Curtis dissimilarity                             Shannon's equitability
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Bracken

• Shannon’s equitability measures
the variety of taxa present in a
sample.

– Outperforms especially in the
family, species, and genus
levels.

– May be due to higher recall.

• Bray-Curtis dissimilarity
quantifies compositional
dissimilarity.

– Comparable except family
and genus levels.
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Conclusions



Conclusions

• A promising launching point.
• Controlled novelety experiment shows that LSH-based CONSULT-II identifies novel

genomes better.
• Our vote-based approach provides a rich representation for the reads, which can be

successfully used in abundance profiling.
• Our heuristics have no theoretical guarantees, but performed well empirically.

Future directions:
• A theoretical framework for the vote and LCA-update probability functions.
• A distance-based phylogenetic placement approach.
• Reducing memory requirements;

120Gb hash table and k-mer encodings + 16Gb taxonomic IDs + 16Gb k-mer counts
> 150Gb 25
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Probability funciton for LCA computation

• Ni: number of genomes including k-mer
i

• For each genome having the k-mer i,
update the LCA taxon with probability
pu(Ni).

– w: rate of decrease
– s: the offset of the function pu

pu(Ni) = min

{
w

max {Ni + w − s ,w} +
1
s2 , 1

}
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Controlling precision-recall tradeoff with total vote threshold

The empirical cumulative distribution of
total votes for TP/FP shows the tradeoff.
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Removing classifications with low total-vote values
increases precision by sacrificing some recall.
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CONSULT-II achieves higher F1-scores in the controlled novelty experiments
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Precision-recall comparison in controlled novelty experiments

order class phylum

species genus family
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