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Problem Definition

Jerber-2021 Dataset

B scRNA-seq count matrices.
B Gene-gene networks for each donor at each time point based on Pearson correlation
matrices.
- After preprocessing:
- 2 days: day-32 and day-50.
- 3 cell types: DA, Sert, and Epen1.
- 16, 22, and 8 donors: respectively for cell types.

Population-scale single-cell RNA-seq profiling
across dopaminergic neuron differentiation
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Problem Definition Cont’d.

Given a multi-subject dynamic gene co-expression network, we aim to infer the communi-
ties for each time point and subject.
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A Baseline Method: Spectral Clustering

We have multiple time series (unweighted) gene co-expression networks; Ggo, . . . Gs(1-1)
for each subject s =0,...,S—1.

deg(vy) ifi=},
0 otherwise,

L=D""2AD""/2 where D;; = { (1)
where deg(Vv;) is the degree of node / and A is the adjacency matrix of the G.
B Define Vi € RG*K as a matrix with columns corresponding to the K leading
eigenvectors of Lg;.

B Find communities separately at each snapshot of time step and for each individual by
clustering on Vg.
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MuDCoD Formulation

Let Ug = VstV In order estimate Ug;, we propose the following optimization problem:

T-1 T-2
, 2 2 - 2
min > <||Ust — Ust||r + Bl|Ust — UtHF) + Y allUst — Usirsnyll
§=0,..5-1 =0 =0 (2)
t=0.. 1

subject to Ug, € {VVT c VeROK vy = l} Vs, Vt.

=T 2 . . .
al|Ust — Ug(t11) | - enforces smoothness over the time dimension.

Bl Ust — UIHZF constrains subject-specific variation from the mean time-dependent
projection matrix Uy:

1 S-1
Z [Ust];
s:O
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Simulation Experiments: Data Generation
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(a) SSoS setting: subjects evolve from a common ancestor at each  (b) SSoT setting: subjects evolve from a common ancestor at t=0;
time step ¢; only the ancestor’s evolution over time is parameterized.  and then they evolve independently over time.
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Simulation Experiments: Results
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(a) The SSoS setting.
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Application to Jerber-2021 Data - 1

MuDCoD discovers revealing gene modules.

Jerber-2021 Dataset
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Application to Jerber-2021 Data - 2

MuDCoD tends to yield higher normalized MI scores between subjects.
MuDCoD displays a comparable heterogeneity to other methods across the time points.
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(a) NMI between subjects on day-30. (b) NMI between subjects on day-52. (c) NMI between day-30 and day-52 for each

subject.
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Application to Jerber-2021 Data - 3

Normalized MI scores between consecutive time points tends to decrease with increasing

differentiation efficiency.
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Future Directions

B Considering dissimilar subgroups present in the data.
B Extending this framework for irregularly sampled time series.
B scRNA-seq datasets are noisy and sparse?
Further investigation for biological interpretation and implications.
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