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Problem Definition

Jerber-2021 Dataset

■ scRNA-seq count matrices.
■ Gene-gene networks for each donor at each time point based on Pearson correlation

matrices.
- After preprocessing:

- 2 days: day-32 and day-50.
- 3 cell types: DA, Sert, and Epen1.
- 16, 22, and 8 donors: respectively for cell types.
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Problem Definition Cont’d.

Problem

Given a multi-subject dynamic gene co-expression network, we aim to infer the communi-
ties for each time point and subject.
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A Baseline Method: Spectral Clustering

We have multiple time series (unweighted) gene co-expression networks; Gs0, . . .Gs(T−1)
for each subject s = 0, . . . ,S − 1.

L = D−1/2AD−1/2 where Di,j =

{
deg(vi) if i = j ,
0 otherwise,

(1)

where deg(vi) is the degree of node i and A is the adjacency matrix of the G.
■ Define Vst ∈ RG×K as a matrix with columns corresponding to the K leading

eigenvectors of Lst .
■ Find communities separately at each snapshot of time step and for each individual by

clustering on Vst .
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MuDCoD Formulation

Let Ust = VstV T
st . In order estimate Ust , we propose the following optimization problem:

min
Ust

s=0,...,S−1
t=0,...,T−1

T−1∑
t=0

(
∥Ust − Ust∥

2
F + β∥Ust − Ūt∥

2
F

)
+

T−2∑
t=0

α∥Ust − Us(t+1)∥
2
F

subject to Ust ,∈
{

VV T : V ∈ RG×K , V T V = I
}

∀s, ∀t .

(2)

α∥Ust − Us(t+1)∥
2
F enforces smoothness over the time dimension.

β∥Ust − Ūt∥
2
F constrains subject-specific variation from the mean time-dependent

projection matrix Ūt : [
Ūt

]
ij =

1
S

S−1∑
s=0

[
Ust

]
ij .
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Simulation Experiments: Data Generation
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(a) SSoS setting: subjects evolve from a common ancestor at each
time step t; only the ancestor’s evolution over time is parameterized.
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(b) SSoT setting: subjects evolve from a common ancestor at t=0;
and then they evolve independently over time.
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Simulation Experiments: Results
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(a) The SSoS setting.
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(b) The SSoT setting.
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Application to Jerber-2021 Data - 1

MuDCoD discovers revealing gene modules.
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Epen1 Jerber-2021 Dataset

Consistent with the differentiation dy-
namics, we observed relatively higher
heterogeneity within the high group
compared to the low group.
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Application to Jerber-2021 Data - 2

MuDCoD tends to yield higher normalized MI scores between subjects.
MuDCoD displays a comparable heterogeneity to other methods across the time points.
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(a) NMI between subjects on day-30.
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(b) NMI between subjects on day-52.
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(c) NMI between day-30 and day-52 for each
subject.
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Application to Jerber-2021 Data - 3

Normalized MI scores between consecutive time points tends to decrease with increasing
differentiation efficiency.
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Future Directions

■ Considering dissimilar subgroups present in the data.
■ Extending this framework for irregularly sampled time series.
■ scRNA-seq datasets are noisy and sparse?

Further investigation for biological interpretation and implications.
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